Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
Lancet Respir Med ; 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: covidwho-2299676

RESUMEN

BACKGROUND: In patients receiving venovenous (VV) extracorporeal membrane oxygenation (ECMO) packed red blood cell (PRBC) transfusion thresholds are usually higher than in other patients who are critically ill. Available guidelines suggest a restrictive approach, but do not provide specific recommendations on the topic. The main aim of this study was, in a short timeframe, to describe the actual values of haemoglobin and the rate and the thresholds for transfusion of PRBC during VV ECMO. METHODS: PROTECMO was a multicentre, prospective, cohort study done in 41 ECMO centres in Europe, North America, Asia, and Australia. Consecutive adult patients with acute respiratory distress syndrome (ARDS) who were receiving VV ECMO were eligible for inclusion. Patients younger than 18 years, those who were not able to provide informed consent when required, and patients with an ECMO stay of less than 24 h were excluded. Our main aim was to monitor the daily haemoglobin concentration and the value at the point of PRBC transfusion, as well as the rate of transfusions. The practice in different centres was stratified by continent location and case volume per year. Adjusted estimates were calculated using marginal structural models with inverse probability weighting, accounting for baseline and time varying confounding. FINDINGS: Between Dec 1, 2018, and Feb 22, 2021, 604 patients were enrolled (431 [71%] men, 173 [29%] women; mean age 50 years [SD 13·6]; and mean haemoglobin concentration at cannulation 10·9 g/dL [2·4]). Over 7944 ECMO days, mean haemoglobin concentration was 9·1 g/dL (1·2), with lower concentrations in North America and high-volume centres. PRBC were transfused on 2432 (31%) of days on ECMO, and 504 (83%) patients received at least one PRBC unit. Overall, mean pretransfusion haemoglobin concentration was 8·1 g/dL (1·1), but varied according to the clinical rationale for transfusion. In a time-dependent Cox model, haemoglobin concentration of less than 7 g/dL was consistently associated with higher risk of death in the intensive care unit compared with other higher haemoglobin concentrations (hazard ratio [HR] 2·99 [95% CI 1·95-4·60]); PRBC transfusion was associated with lower risk of death only when transfused when haemoglobin concentration was less than 7 g/dL (HR 0·15 [0·03-0·74]), although no significant effect in reducing mortality was reported for transfusions for other haemoglobin classes (7·0-7·9 g/dL, 8·0-9·9 g/dL, or higher than 10 g/dL). INTERPRETATION: During VV ECMO, there was no universally accepted threshold for transfusion, but PRBC transfusion was invariably associated with lower mortality only when done with haemoglobin concentration of less than 7 g/dL. FUNDING: Extracorporeal Life Support Organization.

2.
J Thorac Cardiovasc Surg ; 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: covidwho-2228489

RESUMEN

OBJECTIVE: We sought to determine the impact of right ventricular dysfunction on the outcomes of mechanically ventilated patients with COVID-19 requiring veno-venous extracorporeal membrane oxygenation. METHODS: Six academic centers conducted a retrospective analysis of mechanically ventilated patients with COVID-19 stratified by support with veno-venous extracorporeal membrane oxygenation during the first wave of the pandemic (March to August 2020). Echocardiograms performed for clinical indications were reviewed for right and left ventricular function. Baseline characteristics, hospitalization characteristics, and survival were compared. RESULTS: The cohort included 424 mechanically ventilated patients with COVID-19, 126 of whom were cannulated for veno-venous extracorporeal membrane oxygenation. Right ventricular dysfunction was observed in 38.1% of patients who received extracorporeal membrane oxygenation and 27.4% of patients who did not receive extracorporeal membrane oxygenation with an echocardiogram. Biventricular dysfunction was observed in 5.5% of patients who received extracorporeal membrane oxygenation. Baseline patient characteristics were similar in both the extracorporeal membrane oxygenation and non-extracorporeal membrane oxygenation cohorts stratified by the presence of right ventricular dysfunction. In the extracorporeal membrane oxygenation cohort, right ventricular dysfunction was associated with increased inotrope use (66.7% vs 24.4%, P < .001), bleeding complications (77.1% vs 53.8%, P = .015), and worse survival independent of left ventricular dysfunction (39.6% vs 64.1%, P = .012). There was no significant difference in days ventilated before extracorporeal membrane oxygenation, length of hospital stay, hours on extracorporeal membrane oxygenation, duration of mechanical ventilation, vasopressor use, inhaled pulmonary vasodilator use, infectious complications, clotting complications, or stroke. The cohort without extracorporeal membrane oxygenation cohort demonstrated no statistically significant differences in in-hospital outcomes. CONCLUSIONS: The presence of right ventricular dysfunction in patients with COVID-19-related acute respiratory distress syndrome supported with veno-venous extracorporeal membrane oxygenation was associated with increased in-hospital mortality. Additional studies are required to determine if mitigating right ventricular dysfunction in patients requiring veno-venous extracorporeal membrane oxygenation improves mortality.

3.
J Thorac Cardiovasc Surg ; 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: covidwho-2150219

RESUMEN

OBJECTIVE: To understand the implications of a tiered extracorporeal membrane oxygenation (ECMO) criteria framework and the outcomes of patients with COVID-19 acute respiratory distress syndrome who we were consulted on for ECMO but ultimately declined. METHODS: All patients declined for ECMO support by a large regional health care system between March 2020 and July 2021 were included. Restrictive selection criteria were enacted midway through the study stratifying the cohort into 2 groups. Primary outcomes included 30-day mortality. Secondary outcomes included reasons for declining ECMO and survival stratified by phase. RESULTS: One hundred ninety-three patients with COVID-19 acute respiratory distress syndrome were declined for ECMO within the study period out of 260 ECMO consults. At the time of consult, 71.0% (n = 137) were mechanically ventilated and 38% (n = 74) were proned and chemically paralyzed. Thirty-day mortality was 66% (n = 117), which increased from 53% to 73% (P = .010) when restrictive criteria were enacted. Patients with multisystem organ failure, prolonged ventilator time, and advanced age had respectively an 11-fold (odds ratio, 10.6; 95% CI, 1.7-65.2), 4-fold (odds ratio, 3.5; 95% CI, 1.1-12.0), and 4-fold (odds ratio, 4.4; 95% CI, 1.9-10.2) increase in the odds of mortality. CONCLUSIONS: Patients with COVID-19 acute respiratory distress syndrome declined for ECMO represent a critically ill cohort. We observed an increase in the severity of disease and 30-day mortality in consults in the latter phase of our study period. These findings may reflect our use of tiered selection criteria coupled with ongoing education and communication with referring centers, sparing both patients likely to respond to medical therapy and those who were unsalvageable by ECMO.

4.
Medicina ; 58(5):611, 2022.
Artículo en Inglés | ProQuest Central | ID: covidwho-1870959

RESUMEN

Background and Objectives: Post-infarct ventricular septal rupture (PIVSR) continues to have significant morbidity and mortality, despite decreased prevalence. Impella and venoarterial extracorporeal membranous oxygenation (VA-ECMO) have been proposed as strategies to correct hemodynamic derangements and bridge patients to delayed operative repair when success rates are higher. This review places VA-ECMO and Impella support strategies in the context of bridging patients to successful PIVSR repair, with an additional case report of successful bridging with the Impella device. Materials and Methods: We report a case of PIVSR repair utilizing 14 days of Impella support. We additionally conducted a systematic review of contemporary literature to describe the application of VA-ECMO and Impella devices in the pre-operative period prior to surgical PIVSR correction. Expert commentary on the advantages and disadvantages of each of these techniques is provided. Results: We identified 19 studies with 72 patients undergoing VA-ECMO as a bridge to PIVSR repair and 6 studies with 11 patients utilizing an Impella device as a bridge to PIVSR repair. Overall, outcomes in both groups were better than expected from patients who were historically managed with medicine and balloon pump therapy, however there was a significant heterogeneity between studies. Impella provided for excellent left ventricular unloading, but did result in some concerns for reversal of shunting. VA-ECMO resulted in improved end-organ perfusion, but carried increased risks of device-related complications and requirement for additional ventricular unloading. Conclusions: Patients presenting with PIVSR in cardiogenic shock requiring a MCS bridge to definitive surgical repair continue to pose a challenge to the multidisciplinary cardiovascular team as the diverse presentation and management issues require individualized care plans. Both VA-ECMO and the Impella family of devices play a role in the contemporary management of PIVSR and offer distinct advantages and disadvantages depending on the clinical scenario. The limited case numbers reported demonstrate feasibility, safety, and recommendations for optimal management.

5.
Membranes (Basel) ; 11(3)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1121711

RESUMEN

The role of veno-venous extracorporeal membrane oxygenation therapy (V-V ECMO) in severe COVID-19 acute respiratory distress syndrome (ARDS) is still under debate and conclusive data from large cohorts are scarce. Furthermore, criteria for the selection of patients that benefit most from this highly invasive and resource-demanding therapy are yet to be defined. In this study, we assess survival in an international multicenter cohort of COVID-19 patients treated with V-V ECMO and evaluate the performance of several clinical scores to predict 30-day survival. METHODS: This is an investigator-initiated retrospective non-interventional international multicenter registry study (NCT04405973, first registered 28 May 2020). In 127 patients treated with V-V ECMO at 15 centers in Germany, Switzerland, Italy, Belgium, and the United States, we calculated the Sequential Organ Failure Assessment (SOFA) Score, Simplified Acute Physiology Score II (SAPS II), Acute Physiology And Chronic Health Evaluation II (APACHE II) Score, Respiratory Extracorporeal Membrane Oxygenation Survival Prediction (RESP) Score, Predicting Death for Severe ARDS on V­V ECMO (PRESERVE) Score, and 30-day survival. RESULTS: In our study cohort which enrolled 127 patients, overall 30-day survival was 54%. Median SOFA, SAPS II, APACHE II, RESP, and PRESERVE were 9, 36, 17, 1, and 4, respectively. The prognostic accuracy for all these scores (area under the receiver operating characteristic-AUROC) ranged between 0.548 and 0.605. CONCLUSIONS: The use of scores for the prediction of mortality cannot be recommended for treatment decisions in severe COVID-19 ARDS undergoing V-V ECMO; nevertheless, scoring results below or above a specific cut-off value may be considered as an additional tool in the evaluation of prognosis. Survival rates in this cohort of COVID-19 patients treated with V­V ECMO were slightly lower than those reported in non-COVID-19 ARDS patients treated with V-V ECMO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA